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Spin stiffness of graphene and zigzag graphene nanoribbons
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We theoretically study the spin stiffness of graphene and graphene nanoribbon based on the Hubbard-type
Hamiltonian. Using the Hartree-Fock method with the inclusion of the adiabatic spin twist, we have obtained
the effective energy functional and investigated the magnetic excitations of the two-dimensional graphene and
zigzag graphene nanoribbon (ZGNR). We have analyzed the spin stiffness of the system with varying tem-
perature and the strength of on-site Coulomb repulsion. For ZGNR, we have also studied the effect of the
lateral electric field on the spin stiffness. As the field increases, the spin stiffness decreases and reaches less
than the half of the zero-field value. However, we remarkably notice that there exists a critical value of the
electric field above which the stiffness starts to increase showing a cusp-like behavior. This critical point is
found to coincide exactly with the metal-insulator transition point of ZGNR.
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I. INTRODUCTION

Graphene, a monolayer honeycomb sheet of carbon at-
oms, has attracted a remarkable interest both theoretically
and experimentally since it first became available in 2004.!
This enthusiasm has been created by the facts that it has very
peculiar electronic properties and also has great potential as a
base material for future nanotechnology devices.>* Graphene
has also attracted much attention as a candidate for an or-
ganic ferromagnetic material since the observation of ferro-
magnetic order in proton-irradiated graphite at ambient
temperature.*~® On the other hand, by reducing dimensional-
ity via cutting graphene and making it into a graphene nan-
oribbon (GNR), it has been demonstrated that this carbon
allotrope can be further qualified as a semiconductor due to
the gap opening and may be useful for the spintronics for
certain GNR due to the emergence of intrinsic edge magne-
tism as well.”"!! Recently the electronic, magnetic, and trans-
port properties of GNRs have been extensively studied'>??
along with the impressive experimental progress.?>=>3 It has
been reported that very narrow GNRs with smooth edges can
be fabricated by ripping apart carbon nanotubes>?* while
some groups have been able to measure edge effects from the
electronic and transport properties.??3!:32

It was shown that a zigzag graphene nanoribbon (ZGNR)
supports the magnetic edge states which are ferromagnetic
along each edge and antiferromagnetic between the two dif-
ferent edges due to the bipartite nature of the lattice
structure. %1134 The first-principles calculations by Son et al.
which demonstrate that ZGNRs can be changed into half
metallic by applying transverse electric field to the system’
have fueled much research activities related to spintronics
applications of the ZGNR.!*1722 Recently, Yazyev et al. cal-
culated that ZGNRs have correlation length of about 1nm at
room temperature and it would reach more than micrometer
at low temperature (below 10 K).??> This means that ZGNR-
spintronics devices can function at low temperatures for
nanoscale circuits made of graphitic ribbons. They have no-
ticed that the large spin stiffness of the ZGNR leads to its
relatively long spin-correlation length in spite that it has very
small magnetic anisotropy. Hence the spin stiffness is one of
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the key parameters for the future application of the ZGNR
spintronics.

In the present paper, we calculate the spin stiffness of
graphene and ZGNR at half filling by solving the Hubbard-
type model using the Hartree-Fock approximation. Since one
of the issues is the feasibility of the spintronics operation at
room temperature, we investigate the spin stiffness of
graphene and ZGNR as a function of temperature. In the case
of graphene, which is intrinsically nonmagnetic, we assign
an unphysically large on-site Coulomb energy to look into
the magnetic phase. We have studied the dependence of the
spin stiffness of both graphene and ZGNR on the strength of
the on-site Coulomb repulsion. Focusing on the ZGNR,
while it exhibits half metallicity under the transverse electric
field, it is still to be studied whether it has sufficiently large
spin stiffness under the electric field. Motivated by this ques-
tion, we investigate how the laterally applied electric field
affects the ZGNR’s spin stiffness.

II. SPIN STIFFNESS OF 2D GRAPHENE

In this section, we introduce the Hartree-Fock approxima-
tion for the tight-binding Hubbard model and apply this
method to obtain the spin stiffness of two-dimensional (2D)
graphene. The spin stiffness p, is a crucial parameter in the
spin wave theory. It is defined to be the quadratic coefficient
of the free-energy increment arising from the adiabatic twist
of the order parameter by an angle 6 along a certain specific
direction.

F(0)=F(O)+%Nps02+0(04). (1)

Here, F(6) is the free energy and N is the number of the
primitive cells. The spin stiffness is also closely related to the
spin-wave velocity. According to the hydrodynamic theory of
Halperin and Hohenberg, the spin stiffness of the Heisenberg
antiferromagnet satisfies a simple relationship p,=v?/x
where v is the spin-wave velocity and y, is the transverse
susceptibility.>> Later, it was proved that the hydrodynamic
relation is also valid for the itinerant electron systems such
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as Hubbard model.’® We adopt the mean-field approach de-
veloped by Denteneer et al. with which they calculated the
spin stiffness of the square lattice at half filling.>” Their re-
sults were shown to be consistent with those from the varia-
tional Monte Carlo calculations and the series-expansion
method.®

The Hubbard Hamiltonian to describe the graphene sys-
tem can be written by

H =- 2 tocg;c;; + UE niTanila, (2)
i,a

(i.j).0a

where i and j denote the nearest neighbors, o represents the
spin index, a= * 1 is the sublattice index, ¢, is the hopping
amplitude, and U is the on-site Coulomb repulsion. Here, we
have introduced two kinds of field operators ¢’ and ¢’ to
represent the bipartite lattice structure of graphene.

Allowing the spin-flip processes, the mean-field one-body
Hamiltonian obtained by the Hartree-Fock decoupling is
given by

Hup== 2 tociycis+ U2 (n nfy = U (S7)S]"

@i.j).oa i,o,a i
+H.c.) + Ey, (3)
where Sf”:cﬂcffi, S?‘:cﬂ'c%, and Eq=UZ,; ((S{NSH)
- <n,a7><n;11>)

When U is large enough (U>2.31,), the ground configu-
ration of graphene at half filling is known to have a Néel
order because of the bipartite nature of graphene.’*3° Since
the system has SU(2) symmetry, we have chosen a spin con-
figuration with (S?z)=%(<n;)—<nﬁ))=0. Based on this
ground state spin order, a transverse spin excitations can be
generated by using the following ansatz:

U(S®) = al e ! 4)

where I' is a positive constant and ﬁf denotes the lattice
point. Here, the Néel ground state is imposed by the sublat-
tice index a= = 1. Now, we obtain the Fourier transformed
Hartree-Fock Hamiltonian

Hyr=- tOZ (¢,;ckt:£c,i0+ He)+U Y (n® )n,’fo

k.o ko.a
-T> oz(cg?cg_qL +H.c.) + E,, (5)
ka

where (ng) can be replaced by 1/2 at half filling and ¢;

=i 12(kB4ky) e—ikx/\s? 401172k \3ky)

The spin stiffness tensor of graphene can be obtained by
collecting the coefficient of the quadratic terms of the free-
energy expansion. One can show that the off-diagonal ele-
ments of the stiffness tensor vanish and the spin excitations
are isotropic so that FHF(cj):FHF(O)+%Nqu2 where the
Hartree-Fock  free energy is given by Fyp=
—éln(Tr e~ PMur—rN)) with B=1/k,T. Here u is the chemical
potential and it becomes U/2 at half filling where the particle
hole symmetry holds. The finite-temperature spin stiffness of
graphene at half filling can be calculated by the following
formula:
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FIG. 1. (Color online) The spin stiffness of graphene as a func-
tion of U/t at zero temperature. The spin stiffness is made to be
dimensionless by dividing it with 7, and a®. At U/t,=2.3 where the
local magnetic moment goes to zero, the spin stiffness vanishes.

The dashed line corresponds to the classical limit of the Heisenberg
model. Inset shows the stiffness curve for square lattice.

2

(—&|¢|2)2 +2 I‘%
1y B dk, dk,
Ps= _E - N >
N< 2
k 4 coshz'Be—(k) (k)
_ Plel’ (a|¢|2)2 5|22
a2 \ak, ) 77|k, Be(k)
- - tanh ,
2¢(k) 4e(k)’? 2

(6)

where €(k)=\|T'[>+|¢|%. Here we introduced dimensionless
quantities such as U— U/t and B8— 1,/ kgT. We plot the spin
stiffness as a function of on-site Coulomb repulsion U/z, at
zero temperature in Fig. 1. In the limit of large U/t, the spin
stiffness approaches that of the classical Heisenberg model
on graphene. When U/t,=2.3, the spin stiffness vanishes
because the antiferromagnetic order disappears exactly at the
same point. This behavior is quite different from that of the
square lattice whose spin stiffness goes immediately to a
finite value 2¢,/ 7> although its magnetic moments are infini-
tesimally small.** This stems from the different mechanisms
for the formation of the magnetic order in the two cases. In
case of the square lattice, its antiferromagnetic ground state
originates from the Fermi-surface nesting at half filling. In
contrast, graphene has no such large instability and the gap
opening by the Neel order is only a perturbative process.

III. SPIN STIFFNESS OF THE ZIGZAG GRAPHENE
NANORIBBON

We now consider the spin excitations of the graphene na-
noribbon with zigzag edges. The ZGNR is illustrated in Fig.
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FIG. 2. (Color online) The hydrogen-passivated graphene nan-
oribbon with width N. It has translational symmetry along y axis
and the lateral electric field is directed along x axis. The sublattices
are represented by two different colors (yellow and blue). We con-
sider at most two hopping processes, the nearest (7)) and next-
nearest (¢') neighbor hoppings.

2 whose width is defined by the number of dimer lines of the
ribbon. When graphene has zigzag boundaries, it has been
shown that edge localized states exist near the band center.!'
While these edge states prefer magnetic phase at any nonzero
U/t,, the bipartite nature of the ZGNR choose an antiferro-
magnetic configuration between two edges. So we can con-
sider spin excitations at all finite values of U/, including the
physical one U/ty=1 at which 2D graphene is
paramagnetic.!!

A. Hartree-Fock approximation for the ZGNR

We consider a ZGNR with hydrogen-passivated edges in-
cluding the next-nearest-neighboring (nnn) hopping param-
eters in Fig. 2. The next-nearest-neighbor hopping processes
break the particle hole symmetry and the charge neutrality at
each carbon atom is also broken. So we should add off-site
Coulomb interactions to the original Hubbard Hamiltonian.
Although this additional Coulomb potential is negligible be-
cause of the small extra charge, it becomes important when
the external electric field is applied on the ZGNR. For these
reasons, the Hartree-Fock Hamiltonian for the ZGNR is
given by

Huyr=Ho+Her+ Hep + Eo, (7)

where H,, is the kinetic part including up to the next-nearest-
neighboring hopping terms, H¢; is the long-range part of
Coulomb-interaction Hamiltonian and Hgp is from the lat-
eral electric field. The ratio between the nearest (7,) and next-
nearest (¢) tight-binding hopping parameters s
t'/ty=0.2.>4142 The Coulomb interaction consists of

HCI_UEZE«HOH) o’nnl)a) EE(F(]’!IS(VLZ)

(o8 l}’l a

+ TS+ 2 2

ij.n,m aB47T€ |rn,i_

¢* (Anf)-(1- ”(mj)
m,j| '
(8)

where the indices «a and B are for the sublattice, n and m for
the dimer line, i and j for the primitive cell and o for the
spin. The coefficient I'(, ;) of the interspin interaction is as-
sumed to be
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FIG. 3. (Color online) Band structures of graphene nanoribbon
with width N=10 including the nnn hopping process. (a) Dispersion
relations when there is no external field. (b) Transverse electric field
(0.077 V/A) is applied to the GNR. The dispersion relation is spin
dependent, which is indicated by two different colors (red and
blue). The band structure near the Fermi level is depicted in the
inset. Bands with a single species of spin are crossing the Fermi
level and this is the realization of the half metallicity.

UGy = UGy = al %47, )

where I'" is a positive constant and « multiplied to I'{" stands
for the antiferromagnetic coupling between two sublattices.
In the last sum, =’ means the sum is over different sites and
(Anf)= 1_<”&,im>_<”&,i),l>' We suppose that the ZGNR is
mounted on a SiO, substrate so that the dielectric constant €
is about 2.5.43 H ., the interaction with the external electric
field is given by Hpp=2, 2 eExn(, ;) , where E is the
strength of the electric field which is applied on the ZGNR
along x axis. Finally, the constant E is

Ey==U2 (nfy Mol o)+~ 2|F . (10)

in,a ln a

From this Hartree-Fock Hamiltonian, we calculate the spin
stiffness of the ZGNR along the direction of the translational
symmetry. We want to check whether our tight-binding
model produces the results consistent with those from differ-
ent methods. First, we consider the band structures of the
ZGNR with width 10. When there is no Coulomb interaction,
the ZGNR has nearly flat bands at the band center. Turning
on the onsite Coulomb repulsion, The ZGNR prefers opening
a gap by breaking the balance of spin occupation between
two sublattices as shown in Fig. 3. Including the next-nearest
hopping process (¢'), the broken particle-hole symmetry
opens an indirect gap which has a comparable size and shape
with the previous first-principles calculation obtained by Son
et al.”® When the transverse electric field is applied to the
ribbon, we also note the gap closing of one spin species
while the other one shows the gap opening as they have
demonstrated. The critical electric field where the gap van-
ishes is found to be 0.054 V/A on the SiO, substrate as
shown in Fig. 3 which is quite comparable with the discrete
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FIG. 4. (Color online) The spin stiffness of the GNR with width
N=10 is plotted as a function of U/f, at zero temperature. Inset
shows the temperature dependence of the spin stiffness of the GNR
with various widths.

Fourier transform (DFT) calculation.®* Second, we also
compare our spin stiffness with that from the first-principles
calculations by Yazyev et al.?? Using the tight-binding model
with the following choice of parameters ty=U=2.7 eV, '
=0.2¢, and the lattice constant a=2.46 A, we have obtained
p,=1273 meV A? including both edges, while they found
p,=640 meV A? for single edge showing an excellent
agreement between the two results.

U dependence of the ZGNR with width 10 is plotted in
Fig. 4. Since we always consider the total energy per unit
cell, we can compare the result in Fig. 4 with that of
graphene by multiplying 10 to graphene’s stiffness. From
this, we notice that the stiffness is a bulk property at large U
and a edge property at small U(<3z).

The temperature dependence of the ZGNR'’s spin stiffness
with various widths is also studied and the results are shown
in the inset of the Fig. 4.*> One can notice that the thermal-
fluctuation effects are almost negligible and the spin stiffness
at room temperature (kgT=0.01¢,) remains almost the same
as that at the zero temperature.

B. Spin stiffness of the ZGNR under the lateral electric field

As we have shown in the previous section, the gap of the
ZGNR can be controlled by applying the lateral electric field
and finally becomes half metallic above a certain critical
value of electric field.® This suggests a ZGNR to be poten-
tially useful as a novel spintronics device. In the previous
DFT study, it was found that the spin-correlation length of
ZGNR is on the order of nanometer near room temperature.
In spite of the lack of the magnetic anisotropy of the ZGNR,
it has demonstrated a long spin-correlation length compa-
rable to the other transition-metal chain system due to its
high spin stiffness. Hence it will be worthwhile to obtain the
spin stiffness of the ZGNR under the transverse electric field
and check whether it maintains its high stiffness values even
within the half-metallic phase.

Since the stiffness is shown to be robust against thermal
fluctuations up to room temperature in the previous section,
we only consider the zero-temperature behavior of the spin
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FIG. 5. (Color online) (a) Spin stiffness of GNR is depicted as a
function of the transverse electric field. The GNR with ten dimer
lines is considered at zero temperature. The typical experimental
values of the on-site Coulomb repulsion and hopping parameters
are chosen. At the critical electric field E,, the spin stiffness curve
shows a cusp. [(b) and (c)] Compare two different phases, below
and above E.. The upper panels of (b) and (c) are the k-resolved
spin stiffness and the lower ones are the band structure near the
Fermi level like the inset of Fig. 3(b). The red (blue) line is the
k-resolved spin stiffness of the C band(V band) where C band (V
band) is the nearest conduction (valence) band to the Fermi level.

stiffness. The results are shown in Fig. 5. Here, we assumed
that the ZGNR with width 10 is on a silicon-oxide substrate
and t'=0.27,=0.2U. As the electric field grows, the spin stiff-
ness decreases and reaches less than half of that at zero elec-
tric field. However, there exists a critical electric field where
the stiffness curve shows a cusp-like behavior and starts to
increase. Then, the stiffness arrives at its maximum point in
the half-metallic region and keeps decreasing again.

We notice that the cusp of the stiffness curve occurs at the
insulator-metal transition point (E=0.054 V/A). We can
explain this observation by introducing a k-resolved spin
stiffness pi(k) which satisfies p,=2,/7_p:(k)dk. This quan-
tity explains how a state with k of the nth band contributes to
the spin stiffness p,. This is plotted in the upper panels of
Figs. 5(a) and 5(b). Before the system enters into the half-
metallic phase, the C band is empty so that no contributions
from pS(k). After the insulator-metal transition occurs, how-
ever, the states between k; and k, are unoccupied while the
states of C band from k5 to the zone boundary can newly
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participate. This kind of behavior contributes to the increase
in the spin stiffness in two ways. One is by removing the
states with negative p from the V band which corresponds to
Spy in the upper window of Fig. 5(c). Then electrons from
this V-band transfer to more edge-localized states (near the
zone boundary) of the C band which corresponds to Sp.
Since the k-resolved spin stiffness near the zone boundary is
always positive, this transfer gains another positive contribu-
tion to the spin stiffness. In summary, as the electric field
closes the band gap, electrons transfer from negative-p states
to the positive-p states near the zone boundary and this is the
reason why the spin stiffness starts to increase at the
insulator-metal transition point.

IV. CONCLUSION

We have studied the spin stiffness of graphene and ZGNR
based on the Hubbard model within the Hartree-Fock ap-
proximation. For both materials, the on-site U dependence of
the spin stiffness has been investigated. Unlikely from the
2D graphene, which remains to be nonmagnetic at the pres-
ence of experimental value of Coulomb repulsion, the ZGNR
acquires an edge magnetism. By analyzing the temperature
dependence of the spin stiffness of ZGNR, we notice that the
thermal-fluctuation effect on the spin stiffness is almost neg-
ligible up to the room temperature. We have also investigated
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the effects of the external electric field applied laterally to the
ZGNR on the spin stiffness. While the electric field reduces
the spin stiffness significantly, we interestingly notice that
the stiffness starts to increase above a certain critical electric
field at which the half-metallicity sets in. For the finite tem-
perature spintronics operation of the ZGNR, it will be quite
important to increase the spin-stiffness value. Considering
the U dependence of the ZGNR’s spin stiffness, we note that
the stiffness is monotonically increasing function of U until
U<3t. This means that the stretching or compressing the
ZGNR can modify the spin stiffness of the ZGNR. Hence the
strain may provide a room to improve the ZGNR’s spin
stiffness.***” Finally, it is important to understand how de-
fects on GNRs may affect the spin stiffness. The effect of
edge defects and impurities on the edge magnetism of
ZGNRs has been previously studied by several groups.®?>43
It has been known that various qualitative behaviors of edge
magnetic states are maintained as long as defects do not
damage the bipartite nature of both edges of the ZGNR sub-
stantially. Hence we expect that the above defects would not
alter our results qualitatively.
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